联邦学习:该技术允许AI模型用保存在许多不同设备或服务器上的数据进行训练。因此,无需从单一设备获取数据或对数据进行复制,模型就能开展学习。这可以被视为“共享模型,而不是共享数据”,创建一个从本地数据学习的全局模型。
安全多方计算:该技术主要能够实现不同使用者能够处理他们不想彼此共享的数据。它可以让一组授权同意的使用者之间共享加密数据,并允许他们处理由所有方的个人数据组成的数据集,确不用访问数据所有者的原始数据。
同态加密:该技术允许数据在加密后进行处理利用。比如说,可以从终端设备找到关键数据,对其进行运算处理,基于群组级洞察力来创建实用模型,根本不需要解密个人记录。
可信执行环境:这是一种硬件特性的隐私保护技术,可在计算设备上创建安全区,能够单独执行某些批准的功能。智能手机使用这种环境可以进行用户生物特征身份验证,也可以创建可信执行环境,以便在个人数据上运行AI模型。
随着数据和AI技能在许多组织普及开来,各种信息数据需要更广泛地共享,实现其价值的最大化利用。在AI时代,确保个人隐私安全尤为重要也更加困难,因为借助当今的高速计算能力,连匿名化数据集都可以进行逆向工程处理,从而识别个人身份,并推测其隐私活动信息。传统的数据保护措施难以满足隐私保护要求,需要尽快了解并应用新一代隐私保护技术来保护智能化应用的安全开展。